The effects of membrane potential, extracellular potassium, and tetrodotoxin on the intracellular sodium ion activity of sheep cardiac muscle.
نویسندگان
چکیده
The intracellular sodium ion activity was measured using liquid ion-exchange microelectrodes with rapid response times in sheep Purkinje fibers and ventricular muscle under voltage control. The mean sodium ion activity in quiescent Purkinje fibers was 8.5 mM at a holding potential of -80 mV. With maintained hyperpolarizing (-110 mV) or depolarizing (-40 and 0 mV) voltage steps, sodium ion activity increased or decreased, respectively. At 0 mV, the mean steady state value for the sodium ion activity was 3.8 mM. Following a voltage step to 0 mV, or back to -80 mV, the time course of the sodium ion activity change could be fitted by single exponentials, with similar half-times. Increasing the extracellular potassium ion concentration from 5.4 to 15 mM did not alter the steady state value of the sodium ion activity at clamped voltages of -80 or 0 mV, which suggests that the external potassium ion activating site of the Na-K pump was saturated. With the extracellular potassium concentration 0 mM (holding potential -80 mV), the sodium ion activity increased. When maintained depolarizing steps to 0 mV were applied, the sodium ion activity decreased by up to 20 mM. This large fall in sodium ion activity is assumed to represent partial reactivation of the Na-K pump due to potassium ion accumulation in clefts. We also studied the stimulation-dependent change in sodium ion activity. Trains of action potentials or short duration depolarizing voltage clamp steps caused a frequency dependent rise in sodium ion activity. The magnitude of the rise of sodium ion activity was not altered by lengthening the duration of each voltage clamp step, but was inhibited by tetrodotoxin or by holding the membrane potential at -50 mV between depolarizing steps. These results show that sodium ion activity is a complex function of membrane voltage, depolarization frequency, and time. The rise in sodium ion activity with stimulation appears to depend on sodium ion entry regulated by the sodium channel, and may be important in the modulation of intracellular calcium and tension through the Na+-Ca++ exchange mechanism.
منابع مشابه
Effects of forskolin on intracellular sodium activity in resting and stimulated cardiac Purkinje fibers from sheep.
In the present investigation, the effects of forskolin on intracellular sodium activity were studied in quiescent and electrically stimulated cardiac Purkinje fibers from sheep using Na+-sensitive microelectrodes. Also assessed, were the effects of this promoter of cytosolic cAMP production on resting membrane potential, action potential and twitch tension. In the quiescent fibers, forskolin (1...
متن کاملADYNAMIA EPlSODlCA HEREDITARIA SODIUM CURRENT AND THE EFFECT OF EXTRACELLULAR pH WITH MYOTONIA: A NON-INACTIVATING
of intact muscle fibers biopsied from a patient who had adynamia episodica hereditaria with electromyographic signs of myotonia. When the potassium concentration in the extracellular medium, [K],, was 3.5 mmol/l, force of contraction, membrane resting potential, and intracellular sodium activity were normal, but depolarizing voltage clamp steps revealed the existence of an abnormal inward curre...
متن کاملDetermining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملDetermining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملIntra- and extracellular K+ and Na+ activities and resting membrane potential in sheep cardiac purkinje strands.
K+- and Na+-selective liquid ion-exchanger microelectrodes were used to measure intracellular K+ activity (aK i) and intracellular Na+ activity (aNa i) of sheep cardiac Purkinje strands in different solutions. In Tyrode's solution with an extracellular K+ concentration ([K+]o) of 5.4 mM, aK i was between 80 and 140 mM and averaged 109.6 +/- 4.0 mM (mean +/- SE, 20 strands). The measured aK i wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 54 6 شماره
صفحات -
تاریخ انتشار 1984